

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

Faculty of Science

Bachelor of Science (B.Sc.)

SUBJECT: PHYSICS

B.Sc. I Semester

Paper-Major& Minor

MECHANICS AND GENERAL PROPERTIES OF MATTER

Course Outcomes

	Course Outcomes	Cognitive Level
CO-I	The learner will use second order linear differential equations to study and solve problems in Harmonicoscillations	U, R, Ap,E
CO-II	Learner will be able to understand / recall Rigid body, Centre of mass, the connection between Rotational Dynamics and moment of inertia. Learner will be able todetermine the Moment of inertia about a given axis of symmetry for different uniform mass distributions.	R, ,U, Ap, An, R, E
CO-III	Learner will be able to understand and apply the law of conservation of linear momentum and understand the concept of center of mass, Elasticity and various elastic moduli	R, U, An, Ap, E
CO-IV	Learner will be able to understand Principles of fluid flow and the equations governing fluid dynamics such as equation of continuity, Bernoulli's Theorem etc.	R , U , Ap, An, E
CO-V	Learner will be able to understand / recall Conservative force field, Gravitational potential, Gravitational self-energy, Central force, reduced mass, Kepler's law, Scattering.	U,R,Ap,A n
CO-VI	Learner will be able to understand the concept of AstroPhysics, special theory of relativity.	U,Ap, E,C

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

Credit and Marking Scheme

	Cradita	Ma	rks	Total Manlia
	Creans	Internal	External	I Otal Marks
Theory	4	40	60	100
Practical	2	40	60	100
Total	6		200	

Evaluation Scheme

		Marks
	Internal	External
Theory	3 Internal Exams of 20 Marks	1 External Exams
	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	
Practical	3 Internal Exams	1 External Exams
	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

Content of the Course

Theory

No. of Lectures (in hours per week): 4.5 Hrs. per weekTotal No. of Lectures: 60 Hrs.Maximum Marks: 60

Units	Topics	No.of
T	Historical background and Oscillations	Lectures
	mstorical background and Oscillations	12
	1.1 Historical background	
	1.1.1 A brief historical background of mathematics and	
	mechanics in the context of India and Indian culture.	
	1.1.2 A brief biography of Varahamihira and Vikram Sarabhai	
	with their major contribution toscience and society.	
	1.2 Oscillations	
	1.2.1 SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; Powerdissipation and Quality factor.	
	Keywords: SHM, Gravitation, Oscillation, Quality factor.	
II	Mechanics of Rigid and deformable bodies	12
	2.1 Rigid body mechanics	
	2.1.1 System of particles and concept of Rigid body, Torque, Centre of mass: position of the centre of mass, Motion of the centre of mass, Conservation of linear & angular momentum with examples, Systems of variable mass: Single stage and multistage rocket, Conveyor	
	 2.1.2 Rotatory motion and concept of moment of inertia, Theorems on moment of inertia: theorem of addition, theorem of perpendicular axis, theorem of parallel axis, Calculationof moment of inertia of rectangular lamina, disc, solid cylinder, solid sphere. 2.2 Mechanics of deformable bodies: 	

	2.2.1	Hook's law, Young's modulus, Bulk modulus, Modulus	
		of rigidity and Poisson's ratio, Relationship between	
		various elastic moduli.	
	2.2.2	Possible values of Poisson's ratio, Finding Poisson's	
		ratio of rubber in the laboratory, Torsion of a cylinder,	
		Strain energy of twisted cylinder.	
	2.2.3	Finding the modulus of rigidity of the material of a wire by	
		Barton's method, Torsional pendulum and Maxwell's	
		needle, Searle's method to find Y, η and σ of the material	
		of wire, Bending of beam, Cantilever, Beam supported at	
		its ends and loaded in the middle.	
	Keyw Poissc	ords/Tags: Rigid body, Centre of mass, Moment of inertia, on's ratio.	
III		Fluid mechanics	12
	3.1 Surfac	e Tension	
	3.1 Surfac 3.1.1	Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion.	
	3.1 Surfac 3.1.1 3.1.2	Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the	
	3.1 Surfac 3.1.1 3.1.2	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of 	
	3.1 Surfac 3.1.1 3.1.2	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily 	
	3.1 Surfac 3.1.1 3.1.2	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. 	
	3.1 Surfac 3.1.1 3.1.2 3.1.3	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the 	
	3.1 Surfac 3.1.1 3.1.2 3.1.3	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the two sides of a curved liquid surface, Excess pressure 	
	3.1 Surfac 3.1.1 3.1.2 3.1.3	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the two sides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of 	
	3.1 Surfac 3.1.1 3.1.2 3.1.3	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the two sides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, 	
	3.1 Surfac 3.1.1 3.1.2 3.1.3	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the two sides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of surface tension of a liquid –capillary rise method, Jaeger's method. 	
	 3.1 Surface 3.1.1 3.1.2 3.1.3 3.1.3 3.2 Viscos 	Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the two sides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's method.	
	 3.1 Surface 3.1.1 3.1.2 3.1.3 3.1.3 3.2 Viscos 3.2.1 	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the two sides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's method. ity Ideal and viscous fluid, Streamline and turbulent 	
	 3.1 Surface 3.1.1 3.1.2 3.1.3 3.2 Viscos 3.2.1 	 Tension Inter- molecular forces and potential energy curve, force of cohesion and adhesion. Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the two sides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's method. Ideal and viscous fluid, Streamline and turbulent flow, Equation of continuity, Rotational and 	

		Euler's equation of motion of a non-viscous fluid	
		and its physical significance.	
	3.2.2	Bernoulli's theorem and its applications (Velocity	
		of efflux, shapes of wings of airplane, Magnus	
		effect, Filter pump, Bunsen's burner)	
	3.2.3	Viscous flow of a fluid, Flow of liquid through a capillary	
		tube, Derivation of Poiseuille's formula and limitations,	
		Stoke's formula, Motion of a spherical body fallingin a	
		viscous fluid.	
	Keyw	ords/Tags: Inter-molecular force, Surface tension, Angle of	
	contac	t, Capillarity, Viscosity, Euler's equation, Poiseuille's	
	formu	la.	
IV		Gravitational potential and central forces	12
	4.1.1	Gravitationalpotential [Conservative and non-conservative	
		force field, Conservation of energy in motion under the	
		conservative and non-conservative forces, Potential energy.	
	4.1.2	Conservative force Conservation of energy Gravitational	
	7.1.2	potential and gravitational potential energy Gravitational	
		potential and intensity of gravitational field due to auniform	
		spherical shell and a uniform solid sphere.	
	4.1.3	Gravitational self-energy, Gravitational self-energy of a	
		uniform spherical shell and a uniform solid sphere.	
	4.2 Ce	entral forces	
	4.2.1	Motion under Central forces, Conservative characteristics of central forces.	
	4.2.2	The motion of a two particles system in central force,	
		Concept of reduced mass, Reducedmass of positronium and	
		hydrogen.	

	4.2.3	Motion of particle in an inverse-square central force,	
		Motion of celestial bodies andderivation of Kepler's laws	
	4.2.4	Elastic and inelastic scattering (elementary idea).	
	Keyw	ords/Tags: Conservative force field, Gravitational potential,	
	Gravit	ational self-energy, Central force, reduced mass, Scattering.	
V		Relativistic Mechanics and Astrophysics	12
	5.1	Relativistic Mechanics:	
	5.1.1	Frame of references, Galilean transformation, and Michelson- Morley experiment.	
	5.1.2	Postulates of special theory of relativity, Lorentz	
		Transformation, Simultaneity and orderof events, Length	
		contraction, Time dilation, Relativistic transformation of	
		velocities, Variation of mass with velocity.	
	5.1.3	Mass-energy equivalence and its experimental verification.	
	5.2 As	strophysics	
	5.2.1	Introduction to the universe, Properties of the Sun, Concept of Astronomical Distance.	
	5.2.2	Life cycle of stars, Chandrasekhar Limit, H-R diagram,	
		Red giant star, White dwarf star, Neutron star, Black hole.	
	5.2.3	Big Bang Theory (elementary idea).	
	Keyw	ords/Tags: Transformation, Mass-energy	
	equiva	llence, Astronomical distance, Chandrasekhar	
	limit, I	Black hole.	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

References

Test/Reference Books:

- Spiegel M. R., "Vector Alalysis: Schaum Outline Series ", McGraw Hill Education, 2017.
- 2) Mathur D. S., "Mechanics ", S.Chand, 2012.
- 3) Mathur D. S., "Properties of Matter", Shyamlal Charitable trust, New Delhi.
- Ghatak A. K., Goyal I. C., and Chua S. J. "Mathematical Physics", Laxmi Publications Private Limited, 2017.
- 5) Hans and Puri, "Mechanics " Tata McGraw Hill
- 6) Sears and Zeemansky, "University Physics", Pearson Education.
- 7) Kleppner and Kolenkov," An Introduction to Mechanics" Tata McGraw Hill.
- 8) Resnick and Halliday "Fundamentals of Physics", 1966.

Web Links: Suggested equivalent online courses:

- https://nptel.ac.in/courses/115/103/115103036/ Mathematical Physics by Dr. Saurabh Basu, IIT, Guwahati.
- https://nptel.ac.in/courses/115/106/115106090/ Mechanics, Heat, Oscillations and Waves by Prof. V. Balakrishanan, IIT, Chennai.

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

List of Experiments

1. Determination of Young's modulus, modulus of rigidity and Poisson's ratio of material of wire using Searle's method.

2. Determination of Young's modulus of material of a metallic bar by bending of beam method.

3. Determination of acceleration due to gravity (g) using bar pendulum.

4. Determination of acceleration due to gravity (g) using Kater's reversible pendulum.

5. Determination of modulus of rigidity of a rod with the help of Barton's apparatus.

6. Determination of coefficient of viscosity of liquid using Poiseuille's method.

7. Determination of moment of inertia of a fly wheel about its axis of rotation.

8. Determination of the moment of inertia of a given body (irregular body) with the help of inertia table.

9. Verification of the theorem of parallel/perpendicular axes of moment of inertia.

10. Determination of modulus of rigidity of material of wire with the help of Maxwell's needle.

11. Determination of Young's modulus of a rod using Cantilever method.

12. Determination of modulus of rigidity of material of wire with the help of torsional pendulum.

13. Determination of force constant of a spring.

14. Determination of Poisson's ratio of rubber.

15. Determination of surface tension of a liquid by Jaeger's method.

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

B.Sc. I Semester Paper-Elective MECHANICS AND GENERAL PROPERTIES OF MATTER

COURSE OUTCOME

	Course Outcomes	Cognitive Level
CO-I	The learner will use second order linear differential equations to study and solve problems in Harmonic	U, R, E,C
CO-II	Learner will be able to understand / recall Rigid body, Centre of mass, the connection between Rotational Dynamics and moment of inertia. Learner will be able to determine the Moment of inertia about a given axis of symmetry for different uniform mass distributions.	R, ,U, Ap, An,R, E
CO-III	Learner will be able to understand and apply the law of conservation of linear momentum and understand the concept of center of mass, Elasticity and various elastic moduli	R, U, An, Ap,E
CO-IV	Learner will be able to understand Principles of fluid flow and the equations governing fluid dynamics such as equation of continuity, Bernoulli's Theorem etc.	R , U , Ap, An,E
CO-V	Learner will be able to understand / recall Conservative force field, Gravitational potential, Gravitational self- energy, Central force, reduced mass, Kepler's law, Scattering.	U,R,Ap, An

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

Credit and Marking Scheme

	Cradita	Ma	irks	Total Manlia
	Credits	Internal	External	I Otal Marks
Theory	3	40	60	100
Practical	1	40	60	100
Total	4		200	

Evaluation Scheme

		Marks
	Internal	External
Theory	3 Internal Exams of 20 Marks	1 External Exams
	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	
Practical	3 Internal Exams	1 External Exams
	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

Content of the Course

Theory

No. of Lectures (in hours per week): 3.5 Hrs. per weekTotal No. of Lectures: 45 Hrs.Maximum Marks: 60

Units	Topics	No. of
Ι	Oscillations and Introduction to Astrophysics	12
	1.1 Oscillations	
	1.1.1 SHM: Simple Harmonic Oscillations. Differential	
	equation of SHM and its solution. Kinetic energy,	
	potential energy, total energy and their time-average	
	values. Dampedoscillation. Forced oscillations: Transient	
	and steady states; Resonance, sharpness of resonance;	
	Power dissipation and Quality factor.	
	1.2 Astrophysics	
	1.2.1 Introduction to the universe, Properties of the Sun, Concept of Astronomical Distance.	
	1.2.2 Life cycle of stars, Chandrasekhar Limit, H-R diagram, Red	
	giant star, White dwarf star, Neutron star, Black hole.	
	1.2.3 Big Bang Theory (elementary idea).	
	Keywords: SHM, Gravitation, Oscillation, Quality factor,	
	Astronomical distance, Chandrasekharlimit, Black hole.	
II	Mechanics of Rigid and deformable bodies	12
	2.1 Rigid body mechanics:	
	2.1.1 System of particles and concept of rigid body, Torque, Centre	
	of mass: position of the centre of mass, Motion of the centre of mass,	
	Conservation of linear & angular momentum withexamples, Systems	
	of variable mass: Single stage and multistage rocket, Conveyor	
	2.1.2 Rotatory motion and concept of moment of inertia, Theorems	
	on moment of inertia: theorem of addition, theorem of perpendicular	
	axis, theorem of parallel axis, Calculation of moment of inertia of	

	rectangular lamina, disc, solid cylinder, solid sphere.	
	2.2 Mechanics of deformable bodies:	
	2.2.1 Hook's law, Young's modulus, Bulk modulus, Modulus of	
	rigidity and Poisson's ratio, Relationship between various	
	elastic moduli.	
	2.2.2 Possible values of Poisson's ratio, Finding Poisson's ratio	
	of rubber in the laboratory, Torsion of a cylinder, Strain	
	energy of twisted cylinder.	
	2.2.3 Finding the modulus of rigidity of the material of a wire by	
	Barton's method, Torsional pendulum and Maxwell's needle,	
	Searle's method to find Y, η and σ of the material of wire,	
	Bending of beam, Cantilever, Beam supported at its ends and	
	loaded in the middle.	
	Keywords/Tags: Rigid body, Centre of mass, Moment of inertia, Poisson's ratio.	
III	Fluid mechanics	12

	3.1 Surface Tension:	
	3.1 Surface Tension:3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion.	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the twosides of a curved liquid surface, Excess 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the twosides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the twosides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the twosides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's method. 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the twosides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's method. 3.2 Viscosity 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the twosides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's method. 3.2 Viscosity 3.2.1 Ideal and viscous fluid, Streamline and turbulent flow, 	
	 3.1 Surface Tension: 3.1.1 Inter- molecular forces and potential energy curve, force of cohesion and adhesion. 3.1.2 Surface tension, Explanation of surface tension on the basis of intermolecular forces, Surface energy, Effect of temperature and impurities on surface tension, Daily life application of surface tension. Angle of contact, The pressure difference between the twosides of a curved liquid surface, Excess pressure inside a soap bubble, Capillarity, determination of surface tension of a liquid –capillary rise method, Jaeger's method . 3.2 Viscosity 3.2.1 Ideal and viscous fluid, Streamline and turbulent flow, Equation of continuity, Rotational and irrotational flow, 	

	viscous fluid and its physical significance	
	3.2.2 Bernoulli's theorem and its applications (Velocity of efflux,	
	shapes of wings of airplane, Magnus effect, Filter pump,	
	Bunsen's burner)	
	3.2.3 Viscous flow of a fluid, Flow of liquid through a capillary	
	tube. Derivation of Poiseuille's formula and limitations.	
	Stoke's formula. Motion of a spherical body falling in a	
	viscous fluid.	
	Keywords/Tags: Inter-molecular force, Surface tension, Angle of	
	contact, Capillarity, Viscosity, Euler's equation, Poiseuille's formula.	
IV	Gravitational potential and central forces	12
	4.1 Gravitational potential:	
	4.1.1 Conservative force, Conservation of energy, Gravitational	
	potential and gravitational potential energy, Gravitational	
	potential and intensity of gravitational field due to a uniform	
	spherical shell and a uniform solid sphere.	
	4.1.2 Gravitational self-energy, Gravitational self-energy of a	
	uniform spherical shell and a uniform solid sphere.	
	4.2 Central forces:	
	4.2.1 Motion under Central forces, Conservative characteristics of central forces.	
	4.2.2 The motion of a two particles system in central force,	
	Concept of reduced mass, Reduced mass of positronium and	
	hydrogen.	
	4.2.3 Motion of particle in an inverse-square central force, Motion of	
	celestial bodies andderivation of Kepler's laws	
	4.2.4 Elastic and inelastic scattering (elementary idea).	
	Keywords/Tegs: Conservative force field Gravitational potential	
	Gravitational self-energy Central force reduced mass Scattering	
	Gravitational sen-energy, Central 10100, feduced mass, Seauching.	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

References

Test/Reference Books:

- 1) Spiegel M. R., "Vector Alalysis: Schaum Outline Series", McGraw Hill Education, 2017.
- 2) Mathur D. S., "Mechanics ", S.Chand, 2012.
- 3) Mathur D. S., "Properties of Matter", Shyamlal Charitable trust, New Delhi.
- 4) Ghatak A. K., Goyal I. C., and Chua S. J. "Mathematical Physics", Laxmi Publications Private Limited, 2017.
- 5) Hans and Puri, "Mechanics "Tata McGraw Hill
- 6) Sears and Zeemansky, "University Physics", Pearson Education.
- 7) Kleppner and Kolenkov," An Introduction to Mechanics" Tata McGraw Hill.
- 8) Resnick and Halliday "Fundamentals of Physics", 1966.

Web Links:

- 1. https://nptel.ac.in/courses/115/103/115103036/ Mathematical Physics by Dr. Saurabh Basu, IIT, Guwahati.
- 2. https://nptel.ac.in/courses/115/106/115106090/ Mechanics, Heat, Oscillations and Waves by Prof. V. Balakrishanan, IIT, Chennai

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

List of Practical

1. Determination of Young's modulus, modulus of rigidity and Poisson's ratio of material of wire using Searle's method.

- **2.** Determination of Young's modulus of material of a metallic bar by bending of beam method.
- **3.** Determination of acceleration due to gravity (g) using bar pendulum.
- **4.** Determination of acceleration due to gravity (g) using Kater's reversible pendulum.
- 5. Determination of modulus of rigidity of a rod with the help of Barton's apparatus.
- 6. Determination of coefficient of viscosity of liquid using Poiseuille's method.
- 7. Determination of moment of inertia of a fly wheel about its axis of rotation.
- 8. Determination of the moment of inertia of a given body (irregular body) with the help of inertia table.
- **9.** Verification of the theorem of parallel/perpendicular axes of moment of inertia.
- 10. Determination of modulus of rigidity of material of wire with the help of Maxwell's needle.
 - 11. Determination of Young's modulus of a rod using Cantilever method.
 - **12.** Determination of modulus of rigidity of material of wire with the help of torsional pendulum.
 - **13.** Determination of force constant of a spring.
 - 14. Determination of Poisson's ratio of rubber.
 - 15. Determination of surface tension of a liquid by Jaeger's method.

16. Determination of Young modulus of brass bar using Flexural Vibration.

Other experiments of the same difficulty level may be added. ## Student needs to perform at least 06 experiments.

